


Introduction 3

The Xamarin evolution 3

Is .NETMAUI the same as Xamarin? 4

Performance and speed 5

Development environment and ease of learning 6

Platform-speci�ic customisation 6

Community and ecosystem 7

Integration and compatibility 7

Cost and licensing 8

Dart vs C#: Language comparison 11

Xamarin to Flutter: Potentialmigration challenges 14

Apple’s response to Flutter 15

Xamarin vs. Flutter: Conclusion 16



Introduction.

WithMicrosoft’s support for all Xamarin software development kits (SDKs) ending on 1st
May 2024, this paper aims to explore the di�erences between Xamarin, .NETMAUI and
Flutter.

Overall, MAUI promises better performance, increased productivity and amore
streamlined developer experience than its predecessor, Xamarin. But while .NETMAUI
boasts signi�icant improvements in some areas, if youwant to build high-performance
appswith a fast development cycle and a stunning user experience, we’d recommend
considering Flutter for your next web ormobile app.

While the transition to Fluttermay present challenges - such as adapting to new
programming languages and restructuring codebases - the potential bene�its of
development speed, user interface quality, signi�icant community support,
future-proo�ing and platform consistency are substantial.

The Xamarin evolution.
Xamarin isn’t ending. It’s evolving. You’re likely already familiar with .NETMAUI - a newer
cross-platform development framework fromMicrosoft, which has replaced
Xmarin.Forms. And, as of 1st May 2024, support for all Xamarin software development
kits (SDKs) - including Xamarin.Forms - will cease. There are no newAPIs planned and
Xamarin.Forms projects should bemigrated to .NETMAUI, while project types currently
using Xamarin.Android, Xamarin.iOS or Xamarin.Macmust be upgraded to .NET
SDK-style projects for continuedMicrosoft support.

If you have an existing Xamarin app - don’t panic - there’s no need tomigrate to .NET
MAUI immediately. But, if you’re a Xamarin developer or a business using Xamarin for
your app development, youmight have beenwondering about the bene�its of the
framework evolution to .NETMAUI, whether it’s going to solve any of your niggling
Xamarin inef�iciencies or perhaps whether it’s time tomake themove to Flutter for your
next project (unless you have essential C# depenencies, but we’ll address that later). So,
let’s start by exploring some of the improvements that .NETMAUI o�ers comparedwith
its predecessor.



Is .NET MAUI the same as Xamarin?
Despite its undeniably powerful and versatile cross-platform development framework,
Xamarin has faced particular development challenges throughout its lifecycle, with some
of themost documented downsides including:

Cost considerations:
Xamarin is free and open-source, but some features, such as Visual Studio Enterprise,
can be expensive for enterprise users.

Performance and size overheads:
Xamarin apps are typically slightly larger and slower than native apps. This is because
Xamarin apps use a layer of abstraction to compile to native code.

Limited access to open-source libraries:
Not all open-source libraries are compatible with Xamarin. This can be a limitation for
developers whowant to use speci�ic libraries in their apps.

Not suitable for apps with heavy graphics:
Xamarin isn’t ideal for developing apps with heavy graphics. This is because Xamarin
apps use a layer of abstraction that can add overheads.

Slightly delayed support for the latest platform updates:
Xamarin typically supports the latest platform updates slightly later than native
development platforms. This is because Xamarin needs to release updates to its own
tools and libraries.

Smaller community:
Xamarin has a smaller community than some other cross-platform development
frameworks. This canmake itmore challenging to �ind help and support.

Steeper learning curve:
Xamarin has a steeper learning curve than other cross-platform development
frameworks, such as Flutter. This is because Xamarin developers need knowledge of C#
and .NET.

Not suitable for tight turnarounds:
Xamarin apps typically take longer to develop than native apps.



As you’d expect from an evolutionary framework, .NETMAUI o�ers several advantages
over Xamarin, including:

● A uni�ied API for developingmobile and desktop apps
● Support for the latest platform features
● Improved performance and reliability
● A smaller learning curve

Overall, MAUI promises better performance, increased productivity and amore
streamlined developer experience than Xamarin. But while .NETMAUI boasts signi�icant
improvements in some areas, if youwant to build high-performance appswith a fast
development cycle and a unique look and feel, we’d recommend considering Flutter for
your next project.

While NETMAUI and Flutter are both excellent solutions for building cross-platform
applications, the choice between the twowill come down to the unique needs and
preferences of your project and development team. In this paper, we’ll explore the
potential advantages and challenges of Xamarin vs Flutter.Without further ado, let’s dive
in.

Xamarin vs. Flutter: Performance and
speed.
Xamarin o�ers decent performance and speed capabilities, especially for applications
prioritising code-sharing across platforms.

However, Xamarin’s performance can be impacted by its use of platform-speci�ic UI
components, whichmight lead to subtle di�erences in behaviour across iOS and
Android. Xamarin applications are typically written in C#, which is then compiled to
native code using Xamarin.iOS and Xamarin.Android.While this approach provides good
performance, it may notmatch the near-native speed achieved by Flutter.

On the other hand, Flutter utilises Dart as its programming language. It boasts
exceptional speed due to its compiled nature and set of widgets, providing a consistent
and highly optimised user experience. For amore detailed comparison between C and
Dart, see the ‘Dart vs C#: Language Comparison’ section below.

When it comes to development speed, Flutter’s hot reload feature gives it a notable edge
over Xamarin. By allowing developers to see instant changes during the development
process, the hot reload feature has been reported in several articles and blog posts to
result in a 30-40% reduction in time-to-market formobile apps.



Xamarin vs. Flutter: Development
environment and ease of learning.
Xamarin’s development environment is robust, particularly for developers familiar with
Visual Studio and C#. However, its learning curve can be steep, especially for those new
to these technologies. Integrating platform-speci�ic APIs andUI elements often requires
additional e�ort and expertise, making the development processmore complex.

In contrast, Flutter o�ers an incredibly user-friendly development environment. Its
simplicity stems from its reactive framework and a rich set of pre-designedwidgets,
which help to facilitate intuitive app creation.

Moreover, Flutter boasts a vibrant and supportive community. Its extensive
documentation, tutorials and active forums provide ample resources for developers of all
levels, signi�icantly easing the learning curve.

Flutter’s hot reload feature allows developers to experiment and iterate quickly, fostering
amore seamless development experience. This combination of a beginner-friendly
environment and collaborative community supportmakes Flutter particularly appealing
to developers looking for an accessible yet powerful framework for cross-platform app
development.

Xamarin vs. Flutter: Platform-specific
customisation.
Xamarin allows developers to leverage native APIs andUI elements. However, the
process can be complex andmay require extensive knowledge of each platform’s
intricacies, leading to potential development bottlenecks.

On the other hand, Flutter stands out with its innovative widget system and exceptional
platform-speci�ic capabilities. Flutter’s platform-awarewidgets provide a flexible and
consistent way to create customUI designs across both iOS and Android platforms,
allowing developers to e�ortlessly achieve platform-speci�ic customisations while
maintaining a cohesive user experience.

Flutter’s approach not only simpli�ies the development process but also guarantees that
appsmaintain a native look and feel on both platforms. Its ease of customisation and
ability to seamlessly handle platform-speci�ic nuances give developers a signi�icant
advantage over Xamarin when creating highly tailored and platform-speci�ic user
interfaces.

https://flutter.dev/community


Xamarin vs. Flutter: Community and
ecosystem.
Xamarin boasts an undeniably strong and dedicated developer community with an
abundance of available resources and support. However, Flutter has gained remarkable
traction recently, establishing itself as a frontrunner in the cross-platform development
landscape.

Flutter’s community is active and rapidly expanding, with developers worldwide
embracing its intuitive framework. One of Flutter’s key strengths lies in its extensive
open-source packages and plugins collection. These contributions from the community
enhance Flutter’s functionality, o�ering solutions for a wide array of tasks, fromUI
design to backend integrations.

Additionally, Flutter’s availability of third-party libraries enables developers to tap into a
vast ecosystem of pre-built components and tools. This wealth of resources, combined
with Flutter’s growing community engagement, provides developers with unparalleled
support, making it an increasingly attractive choice for those seeking a vibrant and
dynamic development environment.

Xamarin vs. Flutter: Integration and
compatibility.
When it comes to their integration capabilities and compatibility, Xamarin and Flutter
both excel in supporting seamless integrationwith backend technologies and providing
coherent compatibility with di�erent platforms and technologies.

Xamarin’s comprehensive integration options havemade it a solid choice for developers
who prioritise compatibility across diverse platforms and technologies. Its robust
integration options and compatibility with various platforms and technologies have
allowed developers to build applications that work consistently across iOS, Android, and
Windows devices. It also integrates well with popular IDEs like Visual Studio and Xamarin
Studio, ensuring a smooth development experience.

While Xamarin has excelled in its compatibility capabilities, the level of integrationmight
require a deeper understanding of platform-speci�ic intricacies, which can lead to a
steeper learning curve and potential challenges for developers unfamiliar with the
Xamarin ecosystem.

On the other hand, Flutter provides seamless integrationwith awide array of popular
development tools and services, including Visual Studio Code and Android Studio.



But Flutter’s real strength lies in its intuitive integrationwith backend technologies and
APIs. It connects with REST, GraphQL, and other APIs, enabling developers to establish
communicationwith databases, cloud services and other backend systems e�ortlessly.

Flutter’s versatility and ease of integrationmake it a preferred choice for developers
looking for a streamlined and ef�icient development process.

Xamarin vs. Flutter: Cost and licensing.
Flutter and Xamarin o�er di�erent licensingmodels, influencing their cost
considerations for commercial use. As a Google-ran open-source framework, Flutter is
free to use for personal and commercial projects. This open-source nature eliminates
initial licensing costs and allows businesses tomodify the source code to suit their
speci�ic needs without incurring additional charges.

On the other hand, Xamarin, owned byMicrosoft, operates under a commercial license.
While Xamarin o�ers a free tier, the full suite of features, especially those tailored for
enterprise-level applications, comes at a cost. Businesses using Xamarin for commercial
purposes have typically needed to invest in licenses, which could be a signi�icant factor in
budget planning.

In terms of potential cost savings, Flutter’s open-source nature provides an advantage by
reducing upfront expenses signi�icantly.

The extensive collection of open-source packages and plugins available within the
Flutter community can save developers valuable time and e�ort, translating into further
cost savings. Xamarin, while powerful, has tended to require a higher initial investment,
especially for larger businesses or projects that demand enterprise-level features.

Companies seeking a budget-friendly and highly flexible solutionmay �ind Flutter a
cost-e�ective choice due to its open-source nature and the availability of a vast array of
free resources. However, the decision to use Flutter should also consider factors such as
project complexity, required features and developer expertise.

For a detailed examination of choosing Flutter for your speci�ic app development needs,
we recommend reading our in-depthwhite paper, Unlocking Business Success with
Flutter: A Comprehensive Guide for Business Owners.







Dart vs C#: Language comparison.
Earlier, we touched on C# dependencies as a potential hindrance for developersmoving
fromXamarin to Flutter. However, due to their language similarities, it’s relatively easy
for developers to shift fromC# to Dart if they want to use Flutter instead of Xamarin or
.NETMAUI. Both languages are object-oriented and have similar syntax. Dart is also a
statically typed languagewhichwill be familiar to C# developers.





Overall, the similarities between C# and Dart outweigh the di�erences, meaning that C#
developers should be able to pick up Dart quickly.

We’d suggest starting by learning the basics of the Dart language, such as syntax, data
types, and control flow statements. Once you have a basic understanding of the Dart
language, learn about the Flutter framework. Flutter has comprehensive documentation
and tutorials that can help you get started.

Don’t be afraid to ask for help. There aremany online resources and communities where
you can get help from other Dart and Flutter developers.With a little e�ort, C#
developers should be able to transition to Dart and Flutter smoothly.



Xamarin to Flutter: Potential migration
challenges.
Migrating fromXamarin to Flutter can be a transformative but challenging process for
businesses and developers.

One of the key challenges lies in the fundamental di�erences between the two
frameworks: Xamarin utilises C# and relies heavily on native components, whereas
Flutter uses Dart and has its ownwidget-based architecture.

Consequently, developersmust adapt to new programming languages and paradigms,
which can require time and e�ort. Migrating existing codebases and ensuring feature
parity can be complex, especially for large, intricate applications.

However, the bene�its of shifting to Flutter are substantial. As discussed, Flutter’s hot
reload feature signi�icantly accelerates the development cycle, allowing for faster
iterations and bug �ixes. The platform’s expressive UI components and platform-speci�ic
customisation options enhance the user experience and facilitate the creation of
engaging, eye-catching apps.

Furthermore, Flutter’s single codebase for iOS and Android reducesmaintenance e�orts
and ensures consistent performance across platforms, ultimately saving time and
resources in the long run.

Despite the challenges, the bene�its of improved development speed, enhanced user
interface, and platform consistencymake themigration to Flutter a compelling choice
formany businesses.



Apple’s response to Flutter.
While there’s no of�icial statement fromApple on its thoughts on Flutter, in 2019, Apple’s
vice president of worldwidemarketing, Phil Schiller, said that Flutter was "a very
interesting technology" and that Apple was "watching it closely."

In terms of howApple views Flutter as a hybrid approach to creatingmobile apps that are
suitable for native iOS apps, our views are speculative. But of course, Flutter could prove
either a competitor to Apple’s own native development tools, such as Xcode or SwiftUI, or
-more positively - a solution to enabling developers to create cross-platform apps
quickly, easily and e�ectively.

Here are some of the pros and cons of using Flutter for hybrid iOS development:



Of course, the Flutter framework is still developing and there have already been some
signi�icant examples of popular iOS apps that have been built using Flutter such as
Google Pay, BMWConnected, Alibaba, eBayMotors andHamilton. These apps clearly
demonstrate that Flutter can be used to create high-quality, native-looking iOS apps.

Xamarin vs. Flutter: Conclusion.
With the Xamarin end of support fast approaching, here is a summary of the key
di�erences between Flutter and .NETMAUI:



The decision tomigrate fromXamarin to Flutter represents a signi�icant choice that
requires careful consideration of various factors.While the transitionmay present
challenges - such as adapting to new programming languages and restructuring
codebases - the potential bene�its of development speed, user interface quality and
platform consistency are substantial.

As the app development landscape evolves, businesses and developersmust align their
projects with frameworks that bestmeet their speci�ic needs and goals. Flutter’s robust
features, intuitive development environment and active community supportmake it a
compelling choice for those seeking a seamless and ef�icient cross-platform
development experience.

While both frameworks allow for cross-platform development, the choice between
Flutter and .NETMAUI often depends on factors such as preferred programming
language, desired level of customisation and integration requirements with existing
Microsoft technologies.

As one of the �irst 13 companies to be listed onGoogle’s Flutter directory, we’re
recognised for our Flutter experience and have currently used the framework to
successfully deliver 7mobile apps: Dodl by AJ Bell, Brawn, 52N,Misthos,Warburtons,
Great Rail Journeys and Railguard.

Through our unique perspectives and in-depth Discovery process, we can support your
business to thoroughly evaluate project requirements and ensure you’re equippedwith
themost suitable tools to create exceptional, high-performing applications that cater to
the demands of today’s competitive digital market.

Interested in having a chat? Get in touchwith our team.

https://flutter.dev/consultants
https://hedgehoglab.com/our-work/making-first-time-investment-a-dodl/
https://hedgehoglab.com/our-work/the-only-app-on-the-market-for-weightlifters/
https://hedgehoglab.com/our-work/aiding-quicker-diagnosis/
https://hedgehoglab.com/our-work/building-trust-between-travellers-and-rail-service-providers/
https://hedgehoglab.com/solutions/perspective/
https://hedgehoglab.com/contacting-hedgehog-lab/

